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ABSTRACT

A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-

dependent partial differential equations with fixed and cantilever boundary conditions. The

sinc discretizations for the second-order temporal problem and the fourth-order spatial prob-

lems are presented. Alternate formulations for variable parameter fourth-order problems are

given which prove to be especially useful when applying the forward techniques of this

paper to parameter recovery problems. The discrete system which corresponds to the time-

dependent partial differential equations of interest are then formulated. Computational issues

are discussed and a robust and efficient algorithm for solving the resulting matrix system is

outlined. Numerical results which highlight the method are given for problems with both

analytic and singular solutions as well as fixed and cantilever boundary conditions.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the author wa_ in resldence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, ttampton, VA 236{}5.



k _ " .

l
I



1 Introduction

The Sinc-Galerkin method for partial differential equations (PDE's) has previously been

developed for the model elliptic problem in two and three dimensions [1, 2], the parabolic

problem in one and two dimensions [3, 2], and the second-order hyperbolic problem in one

dimension [4]. The present work extends the method to fourth-order tlme-dependent prob-

lems with various common boundary conditions. This extension is important for the very

practical reason that the numerical solution of problems in this class is necessary in ap-

plications ranging from the control of large flexible space structures to the development of

robotics designs [5, 6, 7].

For clarity of development, the method will be presented for the linear fourth-order time-

dependent problems

O'u. . O_ ( O'u )_:,_(m,t) - _O-(m,t) + _ gZ(m)_-_(m,t)

and

=f(x,t), O<x<l t>O

u(O,t) = u(1,t) -- O, t > 0

Ou "0 Ou
_-_x{, ,_) = _x(1,t) = 0, _ > 0

u(z,O)=_-( ,0)=0, O___x_<l

(1.1)

_:u(m,t)=f(x,t),. 0<x< 1%>0

-( O'u)- (1,5)=_(t), t > 0 (1.2)u(0,0 = _(t), EI-_x 2

c%'0 t) _(t), 0 Ei_ff_x 2=

Ou'm O"
u(x,O)=-_(, )=0, 0_<z_l.

These formulations are generalizations of the equations which arise when using the Euler-

Bernoulli theory to model beams with flexural rigidity El(x) and fixed and cantilevered

ends, respectively. The general 5(t) and _(t) in (1.2) allow for the inclusion of boundary

controllers. For ease of presentation, the boundary conditions in (1.1) and (1.2) will respec-

tively be referred to as fixed and cantilever conditions throughout the paper. It is noted that



the methods of this work are easily extended to problems with simple and free boundary

conditions with further details given in [8].

The construction of an approximate solution to problems of the form (1.1) or (1.9.) com-

monly begins with a Galerkin discretization of the spatial variable with time-dependent

coefficients. This yields a system of ordinary differential equations which is solved via dif-

ferencing techinques. Due to stability constraints on the discrete evolution operator, low

order methods with small time steps are often required to obtain accurate approximations.

In contrast, the method of this work implements a Galerkin scheme in time as well as space.

Because the basis functions are tensor products of sinc functions composed with suitable

conformal maps, the method has the inherent advantage that the study of error analysis and

matrix structure begins at the level of an ordinary differential equation.

The fully Sinc-Galerkin method in space and time has many other salient features due

both to the properties of the basis functions and to the manner in which the problem is

discretized. First, the judicious choice of a conformal map provides approximate solutions

to (1.1) and (1.9.) which are valid on the infinite time interval rather than only on a trun-

cated time domain. Furthermore, the optimal exponential convergence rate is maintained

even in the presence of boundary singularities. Finally, the discrete system requires no nu-

merical integrations to fill either the coefficient matrix or the right-hand side vector. All

three features prove to be advantageous when solving both forward and inverse fourth-order

problems. A drawback to the method is that it produces a full system in contrast to the

banded matrices which are associated with finite difference and finite element methods. In

part, the exponential convergence rate offsets this disadvantage.

The foundations of the Sinc-Galerkin method are described in Section 2. The fundamental

quadrature rule is given, and the exponential convergence rate of this method is stated. A

thorough review of sinc function properties can be found in [9] and [10].

In the next section, the discretization of the second-order temporal and fourth-prder spa-

tial operators is outlined. Two schemes for_-discretizing El(z) are presented. These two

-schemes are motivated on the one hand by tile forward problem and on the other hand by

the inverse problem involving the recovery of El(z), given sampled data. In thefirs_, El(z)

is differentiated directly, whereas in the second (as motivated by the parameter recovery



problem) EI(x) is replaced by a finite dimensional expansion EI,,,, before differentiation.

Attention is focussed on preserving the method's exponential convergence rate while dis-

cretizing EI(:r.) and adapting to varying boundary conditions.

In Section 4, the one-dimensional results from the previous section are combined to yield

methods which very accurately approximate the solutions to the fourth-order time-dependent

problems (1.1) and (1.2). Two equivalent formulations for the resulting discrete system are

presented and a very robust and accurate solution algorithm is outlined.

Numerical results are presented in the fifth section. Of the many examples tested, those

discussed in this section best exhibit the features necessary for the practical implementation

of the Sinc-Galerkin method. The first and second examples illustrate the method as applied

to problems with fixed boundary conditons while the third and fourth examples have can-

tilever boundary conditions. The first and last examples have analytic solutions, the second

example has an algebraic singularity, and the third example contains a logarithmic singular-

ity. The numerical results demonstrate that the exponential convergence rate is maintained

in all four cases.

2 Sinc Function Properties

For the Sinc-Galerkin method, the basis functions are derived from the Whittaker cardinal

(sinc) function
sin(_rz)

sinc(z)= _, -oo < z < oo
7rx

and its translates

S(k,h)(z) = sinc (Z --hkh) , h>O.

For h* = _, three adjacent members of this sinc family (S(k,h*)(z),k = -1,0,1) are shown

in Figure 1.
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Figure 1. Three Adjacent Members (S(k,h°)(x),k = -1,0,1, h ° = {) of the Translated Sinc

Family.

To construct basis functions on the intervals (0,1) and (0, co), respectively, consider the

conformal maps

and

(2.1)

•r(.,,,)= .,,.,(,.,,). (_.._.)

The map ¢ carries the eye-shaped region

{ I( )rDE-- z=x+iy: arg <d<

onto the infinite strip

Ds = {_ = ' + irl : [rll < d < 2}.

Similarly, the map T carries the infinite wedge

{ *}Dw = vo= t + in: larg(w)l < d <_

onto the strip Dsl These regions are depicted in Figure 2.
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Figure 2. The Domains Ds, Dg, and Dw.

The sinc gridpoints zl, E (0,1) in DE will be denoted zk since they are real. Similarly, the

gridpoints wk E (0, co) in Dw will be denoted tk. Both are inverse images of the equispaced

grid in Ds; that is

and

ekh

zh = ¢-l(kh) = 1 + e ka

th = T-t(kh) = ekh.

To simplify notation throughout the remainder of this section, the pairs ¢, DE and T, Dw

are referred to generically as X, D. It is understood that the subsequent definition and

theorems hold in either setting. Furthermore, the inverse of X is denoted by ¢.

The important class of functions for sine interpolation and quadrature is denoted B(D)

and defined next.
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Definition 2.1. Let B(D) be the class off'unctions F which are analytic in D, satisfy

f_ IF(z)dzl --+O, t _ +co
(t+L)

where L = {is: Is[ < d < _}, and on the boundary olD (denotedOD) satisfy

N(F)- fo_ IF(z)dzj < oo.

The following theorem for functions in B(D) is found in [11].

Theorem 2.1. Let r be (0,1) or (0, oo) when X = ¢ or T, respectively. If F 6 B(D) and

zj = ¢(jh) = X-a(jh),j = 0,-t-l,=h2,..., then for h > 0 sufficiently small

Y(_)e, - h,.__._ <_ . (2.3)

Theorem 2.1 illustrates the exponential convergence rate which is a trademark of sinc meth-

ods. There is a common occasion when it is possible to evaluate the infinite series appearing

in (2:3), namely when integrating against S(k, h) o X. In general, however, the series must

be truncated. With additional hypotheses, it is proven in [9] and [12] that the truncation

need not be at the expense of the exponential convergence.

Theorem 2.2. Assume F 6 B(D) and that there ezist positive constants K, ot and _ such

X'(r) < K exp(-/3lx(r)[),

Then for h sufficiently small

i=-M

(2.4)

<- Kle-_ralh + Kea -°m' _4-_ e-_Nh (2.5)

Theorems 2.1 and 2.2 are used to establish a uniform error bound when building an

approximate solution to an ordinary differential equation (ODE). It should be noted that
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the nature of the class B(D) guarantees that the exponential convergence rate holds for

many differential equations with singular solutions; that is, problems where the solution has

an unbounded derivative on the boundary. By applying the scheme to select second- and

fourth-order ODE's, one can derive the fundamental matrices comprising the discrete sinc

system for the fourth-order time-dependent problems of interest.

3 Sinc-Galerkin Systems for ODE's

In this section, the sinc discretizations will be catalogued for the second-order temporal

problem and two different fourth-order spatial problems distinguished by their boundary

conditions. Alternate formulations for the variable-parameter fourth-order problems will

also be given which prove to be especially useful when applying the forward techniques

outlined in this paper to parameter recovery problems.

In order to construct the discrete Sinc-Galerkin system for either the temporal or spatial

problems, the following identities are needed. Let

i i, i=p_) - IS(p,h), x(z)] =
"='_ O, i_p,

]1 0_)-h s(v,h)ox(_)

6_)-- h' S(p,_)ox(z) = (-2)(-1)'-p
"--" (i-p)' , i¢p,

d _ { O,bt_) = h3 ['_XaS(p'h)°x(z)] l.=. = (___-l_.)i-p[6_ Tr,(i_p)a],

(i- p)_

(3.1)

(3.2)

(3.3)

i=p

(3.4)

i #p,



and

'R 4
-d-_x,s(p'h)° x(z) = -4(-1)'-,

"=*' __-_-_i [6 - z'2(i- p)21, i _ p,

(3.5)

denote the evaluation at the gridpoint zi of the sinc-map compositions and their derivatives

with respect to the map X.

3.I. The Spatial Problem: Fixed Boundary Conditions -

In [13], a thorough analysis of-the Sinc-Galerkin method is given for linear fourth-order

ODE's with fixed boundary conditions. For purposes of constructing the sinc discretization

for (1.1), itsuffices to review that procedure for

L_,(_)= (EI(_)_,"(_))"= f(_),o < • < i

_(0) _(1) = 0 (3.6)

L

_'(o) = _'(1) = 0.

Note that the interval (0,1) is for convenience only; adapting the map ¢ (see (2.1)) generalizes

the method to any finite interval (a, b).

To define the Sinc-Galerkin approximation to (3.6), select the basis N.{Si}i=-Mz where

S_(x) - S(i,h,,) o ¢(z) and take the approximate solution to be

Nil

u_.(x) = _ u, Si(x), m_ = M= ÷ N® + 1. (3.7)
i=- M.

The unknown coefficients {ui} in (3.7) are determined by orthogonalizing the residual

- {Sp}p=_M.. This yields the discrete systemLu,,,. f with respect to the functions _v.

fo r p = -M,,,,,.

where

(Lug. - f, Sp) = 0

, N.,. The weighted inner product (., .) is taken to be

(F,a) = ['F(x)C(x)w(x) dz
JO

(3.8)

(3.9)

!

E

!
=

s

|
|

|



For a further discussion concerning the choice of weight, see [13].

Before invoking the quadrature rules, integration by parts is used to transfer the differ-

entiation of u onto Spw, thus yielding the system

(3.10)

for p = -M.,..., Nffi. With the weight choice (3.9), the boundary terms

{(E/u")'(Spw) - (E/u")(S,w)' + u'(EI(S,w)')'- uCEI(S,w)')"}(m)[' ° (3.11)

vanish for essentially all problems of interest.

Two approaches are distinguished by the treatment of the first integral in (3.10). In the

traditional scheme, El(m) is differentiated directly and the resulting integrals are approx-

imated via sinc quadrature rules. This scheme is direct and suitable for a large class of

forward problems. The second, alternative, approach is motivated by the parameter recov-

ery problem and differs from the first in that El(z) is replaced by a sinc expansion, El,,,.,

before quadrature is applied. Both approaches then proceed in the same manner whereby

the system is expanded and the resulting integrals are evaluated via Theorem 2.2, or when

possible, Theorem 2.1.

The careful choice of the decay parameters a and fl in (2.4) provides a means of balancing

the asymptotic errors resulting from the quadrature and hence minimizes the system size.

With regard to (2.4), the condition

IEI(z)u(z)w(z)(¢'(z))31 <_R I z",

t (1- x) _,

guarantees the decay needed to truncate the infinite quadrature rule.

more convenient assumption than (3.12) is

IEI(z)uCz)l <_ - z)

(3.12)

A less general but

(3.13)

With a and fl specified and M, chosen, the parameter selections

h== aM,
(3.14)



and

N= = M= + 1 (3.15)

balance the asymptotic quadrature errors to at least O(e (-'a_'M°)½). This rate results from

the presence of a sinc function in the integral. In the above, [.] denotes the greatest integer

function. Note that if _M, is an integer, (3.15) can be replaced by the selection N, = _M,.

The discrete system for (3.6), using the traditional approach, can then be formulated

as follows. Let I(0,l = 0, 1, 2, 3, 4 denote the m, x m, matrices whose pi-th entry is od_)

from (3.1)- (3.5) and let 7_(e) be the diagonal matrix with entries rl(__M°),...,rl(_e_ro).

The vector of unknowns _ = [U_Mo," " ,uN°] r is then related to the known vector .f =

[I(_-M.),"', f(zN.)] r by

A.,_= V((¢')-i)? (3.16)

where

A_ "-" (3.17)

The functions at(z), l = 0, 1,2, 3, 4 are given by

(EIw)'"' (re'w)" (EI"_)"
_o= ¢, 2 ¢, + ¢, , (3.18)

a 1 '_ _'" ¢,,,,4(EIw)'" + 6(EIw)" + 4(EIw)'_7 + EIw-_-

' '¢" ¢" " ¢" 2(EI"w)',
-6(EI'w)"-6(EI w)-_- 2ZI'w-_i- + EI (w)-_ +

a2 = 6(EIw)"O' 4- 12(EIw)'¢" + 4EIw¢" + 3(EIw)'_

-6(E_i'wy¢' - 6EIw¢" + EI"w¢',

a3 = 4(EIw)'(¢') 2 + 6EIw¢'¢"- 2EI'w(¢') _

(3.19)

(3.20)

(3.21)

and ==

a, = Eiw(¢') 3. (3.22)

F_rther detaiisconcerningthe derivationof_hesystem(3;16)and _ thoroughBpectralanal-

ysisof the component matrices can be found in [13].
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As mentionedpreviously,the treatment of the first integral in (3.10)yieldsvariouspertur-

bations of the method which areadvantageousin certain applications. One such application

is the parameter recovery problem where an integral part of most numerical schemes for

solving that problem is an accurate forward solver. With this in mind, the alternative ap-

proach mentioned above is implemented wherein the term El(z) in (3.10) is expanded as a

linear combination of weighted sinc functions with four Hermite-like algebraic terms. These

terms are added to accommodate the potentially nonzero function and derivative values of

= {¢k}k=-M. withEI at z 0 and z = 1. Specifically, this parameter basis is taken to be N.

b__,.(_),

b_u.+_(x),

¢,.(_) = ,,,_(_)S,.(_),

bN.(_),

k _ --MZ

k=-M,+t

-M, + 2 < k < N,- 2

k=N,-i

k=N_.

(3.9.3)

Here Sk(z) = S(k,h.) o c/b(z) and the basis weight vg is taken to be

_(_)= _(_)= [_(i- x)lt. (3.24)

The algebraic boundary basis functions are given by

b_M.+l(z) = (1 - z)212z + 11,

bN._l(x) = x'[2(1 -- x) + 1],

b_,.,.(x)= _(1- _)'

and

b..(_) = -_'(1 - _).

The finite dimensional approximation of EI then takes the form

EI,,,.(x)=
I_T R

_¢_(_).
k_Ma

(3.2s)

11



The number of basis functions used in the expansion is chosen so as to guarantee a square

coefficient matrix. This is done to simplify the implementation of the method when applied

to the PDE (1.1) of interest.

A quick note should be made concerning the choice of basis and the manner of expand-

ing El,,,,. The two derivative-interpolating boundary basis functions are added so that this

expansion of El,,,, is the same as that used with cantilever or free boundary conditions. The

choice of (3.24) for basis weight is certainly sufficient and proves to be beneficial when in-

corporating this forward scheme into a numerical method for solving the parameter recovery

problem.

The expansion (3.25) is substituted into (3.10) and the resulting integrals are evaluated

via Theorem 2.2 or Theorem 2.1 when posslble. The decay condition (2.4) equates to the

condition

f
IEZ(x)=(z)l /

1,

where the "homogeneous" part of EI is

(3.26)

,f.Z(z) = EI(z)- EI(O)b_M.+I(z)- EI(1)bN._I(x)- EI'(O)b_M.(X)- EI'(1)bN.(Z). (3.27)

The arguments leading to this condition are analogous to those presented in the second-order

case as described in [14]. Again, this may be replaced by the more stringent requirement;

_ -

As before, the asymptotic errors are balanced by choosing h, and N. as specified in (3.14)

and (3.15).

With g and f defined as before and EI expanded, the system for (3.6) using this alter-

native approach can be written as

Afg= D((¢')-]); (3.28)

where

(3.29)

12



The notation D(I_¢(,)), l = 0, 1,2 denotes the diagonal matrices containing the components

of the vectors

where E = [c_M.,

componentwise by

•.. _CN.] T.

_,(,) = _(0_, l = 0, 1,2 (3.30)

The matrices (I)O),j : 2,3,4 and xP(t),l = 0, 1,2 are defined

[¢(j)]__ 1 "S w_(J)(=i) (3.31)
¢,(=,)( , J

and

[q_(Olih = ¢_t)(=,). (3.32)

The notation on the right-hand sides of (3.31) and (3.32) indicates the j-th and l-th deriva-

tives, respectively.

To illustrate the dependence of (I,(J), j = 2, 3, 4 and _(t), l = 0, 1,2 on previously defined

matrices, the respective expansions are listed below. The diagonal matrices D and the

matrices I(t),t = 0, 1, 2, 3, 4 have sizes consistent with the following range of the indices i,p

and k (-M® < i < N=, -M= _< p _< N,, -M= + 2 _< k _< N= - 2). From (3.31) it follows that

(I)(') = _/(')DCw¢') + _/(')D(2w')+/(°)V(w"), (3.33)

,c_) = _ic_)v (_(¢),) + _i(')v(3_'¢+ 3_¢")
¢"_ (w'% (3.34)

(3.35)

(3.36)

and

_(,) __ 1 i(,) _ (w(¢')a) Jr _](z)D (4w'(¢')= + 6w¢'¢")h_.

+ _-_I(')D (6w"¢' +12w'¢" + 4w¢'" + 3w_)

¢,,,_+I IO)D 4w'" + 6w"_ + 4w'¢J_¢,+

+1(°)v \ ¢'/'

For l = 0, 1,2 the rnf x m= matrices in (3.32) are given by

= ;

13



where _t)= [b(kt)(Z_Mo), ..., b(t)(XtCo)]T for k = -M..,-M: + 1,N_ - 1, and N_. Again, the

superscript g indicates the g-th derivative. The m_ x (m, - 4) matrices B (t) are

and

B (°) = D(v_)I (°),

B0)= + (v )ico)

(3.37)

(3.38)

The negative signs that appear in the definitions of B 0) and B O) result from the transposing

of I (1). Again, it is noted that in (3.37)- (3.39), the m: x (mz- 4) matrices I(t),l = 0, 1,2

havecomponentsS!I)as definedin (3.1)-(3.3).

Thus, the fourth-order spatial problem (3.6) can be solved in a variety of ways using

the Sinc-Galerkin method. For standard forward problems, the system (3.16) is often the

most convenient to formulate and solve. If the forward solver is part of a numerical routine

for solving the parameter recovery problem, then (3.28) is more useful since EI is replaced

by its finite dimensional approximation. Both approaches yield solutions u,,_, which are

exponentially convergent approximations to the solution u of (3.6).

8._. The Spatial Problem: Cantilever Boundary Conditions

A second set of fourth-order boundary conditions arise when modeling beams that are

fixed at one end and free at the other. To extend the Sinc-Galerkin method to problems

with these cantilever boundary conditions, consider the ODE

Lu(z) = (EI(z)u"(z))" = f(z), 0 < x < 1

( E Iu")(1) = "7

(EIu")'(1) = _.

(3.40)

A Sinc'Galerkin method to approximate the solution of (3.40) can be developed as follows.

14



Definethe set of basis functions I,, 1N.+4
I%',I i---M.,-4 by

B_u._.(x), i = -M. - 4

B_m._3(:r), i = -M: - 3

B-M._2(x), i = -M. - 2

B_M._a(x), i= -M,_- 1

v(z)S,(x), -M. < i < N.

BN.+I(z), i = N, + 1

BN,+2(z), i = N. + 2

BN.+3(:r), i = N. + 3

BN.+4(z), i = N.. + 4.

Here S/(z) = S(i, hz) o ¢(z) and the basis weight v(z) is taken to be

(3.41)

The boundary basis functions are

v(:_)= [x(1- :_)]_. (3.42)

and

B-M._a(z) = (1 -- z)4120z 3 + 10x' + 4x + 1],

BN.+,(x) = x'[20(1 -- x) 3 + 10(1 - x)' + 4(1 -- x) + 1],

B_Mo_,(x) = z(1 - x)4[10x ' + 4z + I],

BN.+2(z) = --z4(l--x)[lO(Y --z)_ + 4(1 --z) + i],

B_Mo_n(:r) = :r'(1-- :r)4 [2x + l] ,

BN.+n(x)--z'(1--x)'[2(1-:r)+_],

B_M._4(:r) = lx3(1- x) 4
O

B,v.+4(x) = -_z4(1 - x) 3.

15



A brief note concerning the choice of basis is in order at this point. First, since

dTqt_,dCl)rgri h=)o ¢(z)], l = 1, 2, ..,. are undefined at z = 0 and :v = 1, some basis modifi-

cations must be made when solving problems with nonzero boundary conditions (see also

the definition of Ch in (3.23)). It is tempting to use fewer algebraic boundary basis functions

and the basis weight

v(x) = _,(:- _)3,

but in many problems this results in nonzero boundary terms when integrating by parts. By

using the basis weight v(z) = [z(1 -z)] 3 and a full complement of algebraic terms, this pitfall

can be avoided. Furthermore, the basis {(_} as defined in (3.41) can be used for problems

with free boundary conditions, thus providing consistency to the method.

The approximate solution is then defined to be

=,,,,+,6,,',+,,(=,)
N.

i=-M_

(3.43)

where _,_,'_, and $ are known and the coefficients {u_} are unknown. The quantities

_ = E--?_(:):

and

$ _i__ $ EZ'(_)- [EX(:)]':

are well-defined since EZ(z) is assumed positive on [0, 1]. Note that with the definition (3.41)

for the basis {¢'_}, u,,,o(m) satisfies the boundary conditions; that is,

_..(0) = :, (EZ=".)(:) = :

_'_.(0)= _, (EZ=".)'(:)= _.

The m= + 4 unknown coemcients in (3.43) are determined by orthogonalizing the residual

fS' lN.+2 This Petrov-Galerkin approach is inwith respect to the set of sinc functions : p.b,=-Mo-2"
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contrast to those Oalerkin methods in which the residual is orthognalized with respect to

the basis and is done to take advantage of the exponential accuracy of point evaluation in

the quadratures. This yields the discrete system

(Ltd. - f, Sp) = 0 (3.44)

for p = -M, - 2,..., N, + 2. The inner product (., .) is that defined in (3.8) with the weight

in this case taken to be

w(z) = 1. (3.45)

The difference between the weight function in (3.45) and that given in (3.9) is due to the

presence of the basis weight v(z) in the definition of the basis {(_}. If the definition

No

uh(z)= _ u,6(x )
i=- M°

is made, then (3.41) and (3.44) can be combined to yield

(LB_Mo-3, St,)U-M°_3 + ( LB_Mo_4, Sp)U_Mo_4 + (LBNo+I, Sp)uN°+,

+( LBN.+2, St,)U_ro+, + ( Lut,, St, )

= (?,s,)

for p = -M® - 2,...,N, + 2 and

(3.46)

7(:r) -/(:r) - "_LB_M°_I(:r) - _LB_M°_,(:r) - Z,/LBN,+3(:r) - gLBN°+4(z).

Integration by parts is applied to (Luh, Sp) thus yielding the integral

fo I uh(:r)[EI(z)( S_,(z)w(:r))"]"dx (3.47)

(compare to (3.10)). The weight choice (3.45) is sufficient for guaranteeing that the boundary

term (3.11) vanishes with u replaced by uh. As in Section 3.1 there are two approaches here.

In the traditional approach EI(:r) is differentiated directly and in the alternative approach

EI is simply replaced by the finite dimensional approximate EI,,_.. The remaining inner

products in (3.46) are evaluated directly via Theorem 2.1.
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Proceedingwith the first approach,as indicated by (3.12), the choice of weight w directly

affects the decay conditions dictated by (2.9) of Theorem 2.2. For the weight w(z) = 1 the

condition

IEI(=)U(=)I _<x_'+z(1 - x) _+z (3.48)

guarantees su_cient decay so that the asymptotic errors resulting from the quadrature can

be balanced by choosing hffi and N= as specified in (3.14) and (3.15). The term H(=) denotes

that part of the true solution which is approximated by uh and is given by the formal change

of variables

u(,)= ,,(,)- =B__,._,(.)-)_B_,_._,(,)- _BN.+_(_)- _B,_.+,(.)

-_,"(O)B__.__(:_)- _,"(O)B__._,(=) (3.49)

-_,(1)B_.+,(=)- ,.,'(1)B,v.+_(=).

The discrete system for (3.40) can then be formulated as follows. Let E-M.-3, g-M.-4,

ENo+I, EN.+2 and f denote the (m, + 4)x 1 vectors containing the product of _ and

the approximations to the inner products (LB_M._3, Sp), (LB_M.__,Sp), (LB_N.+I,Ep),

(LBN.+2, Sv), and (7, Sp), respectively. Hence the p-th entries of the respective vectors are

(i = -M® - 3, -M= - 4, N= + 1, N= + 2) and

Furthermore, let A,, denote the (m, + 4) × m_ matrix which results from the expansion of

the inner product (Lm,, Sp). For at(z), t = 0, 1,2, 3, 4 as defined in (3.18)- (3.22), the matrix

A,, is given by

A,,, = _-_l(4)D(va4) + _-_I(3)D(va3) + _-_I(2)_D(va_)

+¼ zc')Db,,,,) + ,,_°)z)(,_).

Here I (t), t = 0, 1,2, 3, 4 are (m, + 4) × m= matrices whose/r/-th entry is given by ¢_) from

(3.1) - (3.5), and v is defined in (3.42).
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The discretesystemfor the determination of the unknown coefficients{ui} is given by

A,t7 = f

where the (m, + 4) × (rex + 4) matrix A, is defined to be

Ax = [i__u._4 i g_u._s i A,, i/_N.+I i gN.+2]. (3.50)

Here _7is defined to be the (m. + 4) x 1 vector

1_ = [%t_U._4, U-U.-3, U-U. ,''', %tN., UN.+I, _tN.+2] T (3.51)

containing the unknowns.

It is noted that the matrices A, as defined in (3.17) and (3.50) differ only in the presence

of v in the diagonal multipliers and the addition of border vectors. Hence the method is easily

adapted when the boundary conditions are changed. Moreover, the exponential convergence

rate is maintained, thus preserving the accuracy of the method.

With parameter recover in mind, it is again worthwhile to use the alternative approach

to develop the discrete system which arises when EI(z) is replaced by the finite dimensional

term Elm. as defined in (3.25). To simplify notation in the discussion which follows, let

No

Bib(x)= ckvE(x)Sk( )
k=-M,

and

EZo( ) = + + +

so that El,,,o = EIh + EIc. Note that EIh and EIc simply denote the sine and algebraic

components of the approximate parameter.

Consider now the inner products found in the system (3.46). The expansion of (Luh, St,)

proceeds exactly as before with EI(m) simply being replaced by EI_.(z) in the integral

(3.47). In the boundary inner products, (LBd, S t,), i = -M=-4,...,-M,- 1 and i = N, + 1,

• .., N= + 4, expansion and integration by parts yields

I • II I!

+ fo' (EI_B:')'(z)Sp(z)w(x)d:r,.
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The weight to(x) ---1 (see (3.45))issumdent for guaranteeing that

- EI_ , (S,_) }(_)1o= 0.BT = {(EIhB_')'(Spw) B" ' 1

The resulting integrals are evaluated via Theorem 2.2 or, when possible, Theorem 2.1.

For the weight w(x) = 1 , the decay condition is

[Ez(x)u(_)l < x_+3(1- _)e+3

where//and EI are defined in (3.49) and (3.27) (compare to (3.48)). Again, the asymptotic

errors are balanced by choosing h. and N, as specified in (3.14) and (3.15).

The matrix system corresponding to (3.40) may be formulated as follows. Let _(i), _I,(t),

and lgCm be defined as they were in (3.31), (3.32), and (3.30), respectively (with g = 0,1,2

and j = 2, 3, 4). Note that in the definitions now, the index ranges are -.,14", < i < N,,
5

--M, - 2 < p < N, _- 2, and -M, - 2 _< k < N, + 2, and the (rn= + 4) > i coefficient vector

is now g : [¢-M,,-2,''" ,CN,,-I-2]T. Hence ¢(D, _(t) and ig_(,) have the sizes (mffi +4) x mffi,

m, x (m, -{- 4) and m. × i, respectively.

Furthermore, let _" denote the (rn, + 4) x m, matrix which is defined componentwise by

[_'"],k - 1¢'(*k)(&_')"(_k)

and let _ = [C_M.,"', CN.] T. Finally, for i = -M,-4,..., -M®-I and i = N=+i,..., N,+4,

let g/denote the (mz + 4) x 1 vectors

W It II

Here r is simply the rn. x 1 vector of ones.

With the unknown vector _/given by (3.51), the discrete system can be written as

A._ = jr

where

A. = [g-U.-4 i g-N.-a i A= i g,¢.+1 _ a_.+2] (3.52)

and
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The (m, -4-4) x m, submatrix A,,, is given by

It should be noted that the coefficient matrix A, in (3.52) differs from that arising in

the fixed boundary problem, (3.29), only in the presence of v in the diagonal multipliers and

the addition of border vectors. This makes the method easily adaptable when changing the

boundary conditions. Furthermore, the matrices _(J), _", and _(0 can be expanded in terms

of fundamental matrices in a manner similar to that in (3.33) - (3.36), thus simplifying the

implementation of the method. Finally, the exponential convergence rate of the method is

maintained, thus preserving the method's accuracy.

With the techniques from this section, the implementation of the Sinc-Galerkin method

for problems with free and simple boundary conditions can be accomplished in a manner that

is completely analogous to that used for cantilever boundary conditions. Further details and

examples of the Sinc-Galerkin method for problems with free and simple boundary conditions

can be found in [8].

8.8. The Temporal Problem

The last ODE to be considered is the initial value problem

P_,Ct)- _(_)=/(t), 0 < _< oo
(3.53)

_(0)= _(0) = 0.

A Sinc-Galerkin method to approximate the solution of (3.53) can be developed in a manner

similar to that of the preceding boundary value problems. Define the set of basis functions

, N,
{S_ }j=__, by

s;(t) = s(j, hd oT(t)

where T : Dw .-4 Ds is given in (2.2). The approximate solution u,,,,(g) is then defined by

/¢t

u.,,(t) = _ ujS;(t), rnt = Mt + N, + 1. (3.54)
j=-M,

The rn t unknown coefficients {uj} in (3.54) are determined by orthogonalizing the residual
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with respect to the set of sinc functions {,_,q;}__.t_Mtwhich leads to the analysis of

for q = -M_,

(/,s;) = (P_,,s;)

= (_,s;)

• ", Nt. The weighted inner product for (3.55) is defined to be

(F, G) = _Z' F(t)G(t)w*(t)dt,

and the weight is taken to be

(3.ss)

1

_,'(t) = _

for reasons that are discussed in [4]. As before, integration by parts is used to transfer the

differentiation of u onto S'w*. To guarantee that boundary terms vanish, it is assumed that

lim _(t)vq _ 0.
,-_o l_(t)

The resulting integrals are then evaluated via the quadrature rules of Section 9.. With respect

to (2.4), the condition
f

lu(t)x/_l _ R _ *" t E (0, 1)

( s-s, te[1,_)

guarantees the boundedness necessary to truncated the infinite quadrature rule. With _, and

6 specified and Mt chosen, the parameter selections

and

balance the asymptotic errors in (9..5) to at least O(e -('d'M0½).

In many time-dependent PDE's, it is reasonable to assume that the solution decays

exponentially at infinity; that is, the solution satisfies

luCt)v/-_t)l </f / t", t _ (0,1)

Le -st , I,E [1,oo)

i

i

=
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or, more stringently,

I_(t)l<_Kt_+Je-U. (3.57)

With this supposition, Lund [12] shows that the condition (3.56) can be replaced by

The selection Nt in (3.58) significantly reduces the size of the discrete system with no loss

of accuracy.

The discrete system for (3.53) can then be formulated as follows. Let I(t), £ = 0, 2 denote

the rat x mt matrices whose qj-th entry is 6_ ) from (3.1) and (3.3), and let 7_(n) again be

the diagonal matrix with entries _l(t-M,),"', _l(tN,). With the usual definitions for a and f

and the identity

-t{(_(t))-_},, 1(/r(t)) = --4'

the system for the determination of the unknown coefficients {uj} is given by

A,a = V((_t)-')/ (3.5o)

where

Further details concerning the derivation of the system (3.59) can be found in [4].

Note that nonzero initial conditions can be handled in a manner analogous to that used

for nonzero boundary conditions in the previous discussion. Rational initial basis functions

are used to incorporate the initiM behavior and this known contribution is then taken to the

right-hand side of the resulting discrete system (see [8]). All other analysis is identical to

that for the problem (3.53).

4 Time-Dependent Problems

This section details the Sinc-Galerkin method applied to fourth-order time-dependent PDE's

with fixed and cantilever boundary conditions. Since the choice of basis, test functions, and

inner product are all straightforward extensions of those used to solve the ODE's in Section 3,
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the error analysisand systemformulation follow directly from previously discussedresults.

Once a discrete system has been formulated, various options exist for solving the associated

matrix equation. Two such algorithms are outlined and their relative merits for various

problems are discussed.

._. I. The Time-Dependent Problem: Fized Boundary Conditions

Consider the time-dependent problem

02U .

O' ( uz-O'u )t) + El(z)zT_(z,t ) = f(z,t),c ,,(, ,t) - .-6.i-_C_, O<x<l

u(O,t)=u(1,t)=.O,

(0, t) = b-_x(1, t) = 0,

Ou o) o,,,Cx,0)= _TCx, =
Given the basis {Sii} where

t>0

t>0

O<x<l.

g,,(_,t)- s,(_)s;(t) = s(i, h.)o ¢(_)s(j, h,)o r(t),

t>0

(4.1)

the approximate solution is defined by way of the tensor product expansion

N. N,

u.,.,.,,Cz,t)= _ _ uljSij(z,t), m. = M. + IV.+ I, mt = M, + IV,+ I.
i=-M, j=-Mt

The m,. mt unknown coefficients {uq} are determined by orthogonallzing the residual with

respect to the set of sinc functions . _=-M,,...,N,{Sv(x)S_(t)}n=_M.,...,N .. This yields the discrete Galerkin

system

(f_um.=,- f, s_s;) = o

for p = -M,, ...

where

, N, and q = -M,,..., N,. The inner product (., .) is taken to be

OF,o) = fo®]o'rC_,tlOC_,tlwC_,t)d_dt (4.2)

_0C,,t)= ,_(_)w'Ct)= (¢(x))-JC¢Ct))-_.

The quadrature rules and one-dimensional results from Sections 3.1 and 3.3 can be used to
:S _ Z

determine the resulting matrix system.
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As before, equating asymptotic errors is fundamental to minimizing system size. When

the decay conditions (3.13) or (3.26), and (3.57) are combined to yield

IEI(x)u(x,_;)l <_ Kx_+g(1- x)_+J_'+½e -6' (4.3)

or

then the choices

and

IEz(_).(_, t)l < K_'+t(1- _)_+tt'+te -6', (4.4)

i_d (4.5)h® = aM_'

h, h., (4.6)

N. = _ , + 1 , (4.7)

M, = I_M. + 11, (4.8)

Nt=i_ln(_Mth,)+l] (4.9)

for the stepsizes and summation limits balance the asymptotic errors. If one takes d =

then the above choices yield an asymptotic error rate of order O(e-'_-_).

Given M_, N,,, Mr, Nt and h = hB = ht as defined above, the discrete system for (4.1) is

A=UC_ + C,,UA_ = G. (4.10)

Here

and

G---_

The mt× mt matrix At is given by

(4.13)
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asshownin (3.60). Furthermore, rn, ×mt matrices U and F are defined componentwise by

[U]is = ui_

and

[F]ij = f(:ri,tj).

It should be noted that the ordering of the coefficients ulj in U mimics that used in most

standard time-differencing schemes. This is a matter of convenience since the Sinc-Galerkin

method is not bound by any specific ordering of the grid.

The structure of the rn, × rn, matrix A, depends on the scheme that is used to discretize

El(z). If the parameter is fully differentiated, then A, is given by (3.17). If, on the other

hand, EI(z) is approximated by a linear combination of sine and algebraic basis functions,

then A, is given by (3.29).

Various methods exist for solving the equation (4.10). Referred to as a generalized

Sylvester equation (4.10) is algebraically equivalent (page 414 of [15]) to the system

.A_ = {Ct ® A. + At @ Cffi} co(U) = co(G) (4.14)

where the tensor or Kronecker product of an rn x rn matrix E with a p x q matrix H i8

defined by

E ® H = [eijH]mn×,q.

The vector _ = co(U) is the concatenation of the rn_ ×mt matrix U obtained by successively

"stacking" the columns of U, one upon another, to obtain an rn_rat × 1 vector.

The system (4.14) can be solved directly via any of the decomposition methods that are

available for linear systems. Although this system is easily formulated, the fact that ¢4 is

very large (m_. rnt × mr. rat) and not banded causes this method to be impractical in some

problems. For more general fourth-order operators however, this may be the only method of

choice.

A second algorithm for solving (4.10) depends on the generalized Schur decomposition

(page 396 of [16]). As guaranteed by the results of Moler and Stewart [17], there exist unitary
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matrices Q,, Z,, Q2, and Z2 such that

Q_A,Z, = P

QTc z1 = R

Q_C, Z2 = S

Q_A,Z_ = T

where P, R, S, and T are upper triangular. If Y = Z_UZ2 and 6' = Q_GQ2, then (4.10)

transforms to

PYT" + RYS" = C.

By comparing the k-th columns, one finds that

I'i n

P __, taiYi + R __, sklyi = ca
j=a j=a

which yields
N

(tkaP + saaR)ya = ca - P __, tkiYi- R __, saiYi (4.15)
j=a+l i=a+1

(for convenience, it is assumed that all matrices are n × n and indexed from 1 to n). With

the assumption that the matrix (takP + skaR) is nonsingular, the solution to (4.15) is easily

found by recursively solving triangular systems.

Although this algorithm does require complex algebra, it is both robust and efficient

and requires no assumptions concerning the diagonalizability of the component matrices.

It should be noted that a "real" version of this algorithm also exists [18]. In this latter

algorithm, Qi,Zi,Q2, and Z2 are orthogonal with P,S quasi-upper triangular and R,T

upper triangular.
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_(.I_. The Time-Dependent Problem: Gantilever Boundary Conditions

A generalization of the problem which arises when modeling beams with cantilever bound-

ary conditions is

02( O_u )O'_,. _)+ m(m)_-_,(m,O = fCm,_), 0 < m < IZ:,,(_,_) : 3-b-C,,

O'_j (1,t)--_(t), >,,(o,t.)= _(t), m_-g/_, t 0
/ (4.16)

(°'_')(1,t) _(t), t>oOu 0 t 0 EI__I_ __(, )=_(t), _ =
Ou

u(x,0) = _-_(m,0) = 0, 0 _<• <__i.

The basis for this problem is taken to be {_',_z)S;(t)} where Ci(x) is defined in (3.41) and

S_(t) = S(j,h,)o T(t). Here the approximate solution is taken to be

-m...,(-.,t) = _ _,X,(_)s;(t)
i:-_. j=-M,

At,

+ _ S;(t){u-M.-_.X-M.-s(m) + u-M.-,.X-u.=,(m)
i:-M,

+'_N.+,,AN.+,(,)+ '_,,r.+,,A_.+,(:)}

+{_(t)C__._,(,)+_C-,_.-,(-)+#(t)6,.+_(_)+ $(t)6,.+,(_)}

where

and

1

#(_)= Ez_V(_)

1 EI'(1) t
$(t)= B---_(1)_(t)-[EI(1)],_().

It should be noted that the approximate solution does satisfy the boundary conditions in

(4.16).

The (rn,+ 4). m, unknowns {u_j} are determined by orthogonalizing the residualwith

respect to the sinc functions {S_(z)S_(t)}___M_'_[t_'2,...,t_,+ 2. This yields the discrete system

(_,.,.,,, - f,s,s;) = o,
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where(., .) is definedin (4.9.)with w(z,t) - ('_(t))-_.

Appropriate integration by parts and the application of the one-dimensional results from

Sections 3.2 and 8.3 yields the matrix equation

A.UC,_ + e.MUA,_ = C (4.17)

where Ct, C, and At are defined in (4.11), (4.12), and (4.13) respectively, and

The (m_ + 4) ×mt matrices U and _g are defined componentwise by

[U]o = u_i

and

_],i = 7(=,,t_)

where

7(=,*) - .f(=,*)- z:(_(0B_,,,,._,(=))-z:(_(0B_u._,(=))

-Z:(_(t)B,.+,(_))- Z:(_(OB,,.+,(_)).

The (m= + 4) x (m® + 4) matrix A,, is given by (3.50) or (3.52) depending on which scheme

is used to discrefize El. Finally the (m. + 4) x (m= + 4) matrix M has the form

U ,._
bL_ bL1

!, I
' 0 :!

I . °
I" "- "!

I

I A

DM Ibm
I

!

0 I
!

bR_

!

where the m. x m= submatrix DM and the (m= + 4) x 1 vectors are given by

DM = 1)(v),

. );,bt, a --'-- 'D( B-M.-4

_, = _(B_.._3)i',

gR,= Z_(et_,+,)f
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and

The system (4.17) can again be solved via the generalized Schur algorithm (4.15) as discussed

in Section 4.1.

Before implementing the method, the decay parameters 5,/3, 7 and 5 must be determined

and summation limits chosen. For the spatial weight w(x) = 1, the decay conditions are

[EI(x)U(x, t)J _< x_+a(1 - x)B+atS+½e-_' (4.18)

or

IEzC )uC ,t)l_<x=+3(1 - x)_+at'Y+_e -_' (4.19)

depending on the manner in which E1 was discretized. Here E2"(x) is defined in (3.27) and

gl(x, t) denotes that part of the true solution which is approximated by

i=-M. f=-M,

(see also (3.49)). With the decay parameters specified and M, chosen, the remaining stepsizes

and summation limits are given by (4.5)- (4.9).

5 Numerical Examples

The four examples reported in this section were selected from a large collection of problems

to which the Sinc-Galerkin method was applied. The results are representative of those

obtained on other sample problems. For purposes of comparison, contrast, and performance

evaluation, examples with known solutions were chosen. The first and last examples have

analytic solutions, the second example has an algebraic singularity, and the third example

contains a logarithmic singularity. As w_ be demonstrated by the numerical results, the

boundary singularities have no adverse affect on the performance of the method.
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In all examples d = {. The errors are reported on both the set of sinc gridpoints

rt • _j=-M'e,..-,Nt
S = ll,=i,ri)]'i_-_M,,...,N,; zi --

and the set of uniform gridpoints (l= = _0,l, = _)

eih®

l + e ih°' tj = e jM

3 "_'Lq-- I'""50
U = {(zip , q/Jp=l,...s0 ; Zp = _=p, Sq = llq.

The errorson these grids are reported as

IlE_°(h.,h,)ll= max

-M.<i_<N.
-M,<i<N,

and

IIE_'(t,,l,)ll = max lu(zp, s¢)- ,,_._,(zp,_)l
0_<t,_<s0
o<__<so

respectively. The dependence of both errors on the number of sinc basis functions is indicated

with the superscript M=. It is noted that if exponential convergence is realized, then

(llE_'(l=,t,)ll)_ = IIE_°(t=,l,)ll

where M= and 217/_denote the lower limitsforthe spatialsums. In the examples of thissection,

._f== 2M®, and the exponential convergence isverifiedby comparing ([]E_'/2(l=,It)H)v_ and

IIE_'(l.,l,)ll.

The error and convergence results are tabulated in the form .aaa - "7 which represents

.aaa × 10 -'r. All problems were run with sixteen place accuracy on a Vax 8550.

Example 5. I.

02 ( 02u )O'u. t) + SI(z)-6-_z2(z,t )

u(O,t)=u(1,t) =0,

Ou

0 _(i,t) o,_(o, = =
Ou

,,(_, o)= _(_,o)

=/(z,t), 0<z<l

t>0

t>0

=0, 0<z<l

t>O

The flexural rigidity is El(z) = 1+ sinOr=)and f(=, t) is consistent with the true solution

tt(z,t) = z(1 - z)sin(4_z)?e -t. The parameter is expanded via (3.25) thus yielding the
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spatial representation (3.29). The decay condition (4.4) dictates the parameter choices a =

= -y= _ and 6 = I. The asymptoticerrorrate O(e-'V'/-gT/) is maintainedas indicated

by the last column of Table 1. Notice that the choice of Nt given in (4.9) significantly

reduces the size of the matrices involved in (4.10). The errors on both the sinc grid and

the uniform grid do not differ dramatically though in the next example the difference will

be more noticeable. Figure 3 shows the true solution u(z, t) while Figure 4 shows both the

true and approximate solutions (for M,, = 8, 16) at the time slice t = 2. The approximate

solution for M, = 32 is buried in the true solution on this scale.

m_l mm_

M. 2V= Mt Nt llE_'(h=,h,)ll

4 4 4 2 .6207 - 0 .8040 - 0

8 8 8 4 .6890 - 1 .8448 - 1

16 16 16 6 .2910-3 .1105-2

32 32 32 9 .1906-4 .2151-4

IIE_'(l., trill (llg_'/2(l.,t,)ll) _

.7345 - 0

.3035 - 1

.6587 - 4

Table 1. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.1.
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Figure 3. True Solution to Example 5.1.
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Figure 4. True and Approximate Solutions to Example 5.1 at Time t = 2

- - - (M, = 8), -.- (M, = 16), -- (True).
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Example 5._.

Onu" t) + O4u" .T#(x, -g-_,(x,t)= f(_,t), o < = < 1 t > o

tt(0, t) = tt(1,t) = 0, t > 0

n o% "1 =
Ou(o,t)=-_z(,t) 0, t>00z

au 0) 0, 0 < z < 1_,(_,0) = _(_, =

The function f(z,t)is consistent with the solution u(x,t) = [z(1 - z)lr/ntS/ne -' which has

algebraic singularities at z = 0, z = 1 and t = 0. The spatial discretization is taken to be

(3.17) with the decay parameters ot = f_ = 3' = 2, 6 = 1 dictated by (4.3). As indicated by

Table 2, the asymptotic error rate O(e -'_) is achieved in spite of the boundary singu-

larities. The increased accuracy of the method for this problem as compared to Example

5.1 is due to the larger values of a,f_ and 7. Here the error on the sinc grid is substantially

smaller than that on the uniform grid. This emphasizes that one should use caution when

assessing performance of a method based on only the errors at the gridpoints of the method.

The true solution is plotted in Figure 5 while time slices (at time t = 2) of both the true

and approximate solutions (for M, = 4, 8) are plotted in Figure 6.

M. N. M, N, IIE_'(h.,h,)ll IIEg'(l=,_,)ll (llE_'/_(4,l,)ll) '_

4 4 4 3 .2040 - 4 .3184 - 3

8 8 8 4 .9361 - 5 .3618 - 4 .1134- 4

16 16 16 7 .1372-6 .1788-5 .5233-6

32 32 32 ii .2742-9 .1338-7 .7441-8

Table 2. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.2.
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Figure 5. True Solution to Example 5.2.

x10.'_

o
uo

0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x zzxi_

Figure 6. True and Approximate Solutions to Example 5.2 at Time t = 2

-- - (M, = 4), -.- (M. = 8), -- (True).
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Ezample 5.3.
0 211. 0411

-_-_(x,t) + -ff_x4(x,t) = f(x,t), O < x < l t > O

O_u t) 2t_e -t, t > O
u(O,t) = O, _-_-z2(1, =

0311 .

_(o,°11t) = o, b-_Cl, t) = o, t > o
011

,4_,o) = _(_,o) = o, 0 < • _<1.
- = ==

The true solution u(z,t) = [(zln(z)) 4 + =_]t=e-i:_dictates the forcing function f(z,t). The

decay_ondition(4.18)with EI(_) = 1 yieldstheparameterchoices_ = _ = 1,7 = 'i'
and 5 = 1 which in turn implies the asymptotic error rate O(e-_'_). As indicated by

the results in Table 3 this rate is achieved in spite of the logarithmic singularity at z = 0.
: = _ =

The convergence of the method is even accelerated which can be seen by in the last column

of Table 3. The mesh plot in Figure 7 shows the distinctive behavior that the solution can

exhibit when cantilever boundary conditions are in force. The "oscillation" at the right-hand

end is tracked accurately by this method. The time slice at t = 2 shown in Figure 8 shows

the approximate (M® = 4, 8, 16) as well as the true solution.

if-:

M= N= M, N, IIE_'(h=,h,)ll IIE_'g=,tdll (llE_'/_(l=,t,)lD_

4 4
_Y

3 2 .4227 - 1 .9083 - 1

8 8 6 3

16 16 II 4

32 32 22 7

.8034 - 2

.8799 - 3

.3947 - 4

.iggg - 1 .3363- 1

.1838 - 2 .3953 - 2

.8741 - 4 .1353 - 2

Table 3. Errors on the Sinc Grid oc and the Uniform Grid U for Example 5.3.

!i:
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Figure 7. True Solution to Example 5.3.

0.6 "_ 1 v T T

0,5

0.4

0._

0.2

0_1

0
0 0.1 0.7_ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X -axiq

Figure 8. True and Approximate Solutions to Example 5.3 at Time t = 2

-- - (/Fir= = 4), -.- (M. = 8), ... (M. = 16), _ (True).
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Ezarnple 5.4.

-gg(_,t)+ _ E1(z)_-_--i_(_,0 = f(_,t),

( °'") (l, t) = 0, t>0_(o,t) = o, Ez_-_

( a'_')(l,t)=S::e-', t>0_x(0,ou t) = t2 e -t, -_zO EI__x2

0<z<1 t>0

- -51-- i

,4_,o)= a"_/.(z,o)o, O_<z_<l.

This example illustrates a problem where the spatial discretization (3.52) is useful. Here

the flexural rigidity is El(z) = 1 + sin(Trz).and the forcing function f(z, t) is consistent

with the true solution u(z,t) = [sin30rz) + z]:e -t. The parameter El(z) is expanded via

(3.25) thus yielding the spatial representation (3.52). The parameter choices tr = f_ = 1,

a and 6 1 follow from (4.19). As demonstrated by the last column of Table 4, the")'=i =

asymptotic error rate O(e-'V/_'_) is achieved for larger values of M,, Nz, Mr, and Nt. On

this example the errors on the sinc grid and those on the uniform grid are nearly the same.

The smaller parameters a and f_ indicate why the errors here are larger than in the previous

three examples. A mesh plot of the true solution is shown in Figure 9 while a time slice

(t = 2) of both the true and approximate solutions (M,: = 8, 16) are plotted in Figure 10.

Mz N_ M, N, llE_f'(h.,h,)ll llE_'(e.,e,)ll (IIE_'/'(e.,e,)II)_
=

s 8 6 3 .6889-i .6958-i

16 16 11 4 .2958-i .3165-I .2307-I

32 32 22 7 .4346-3 .4885-3 .7572-2

Table 4. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.4.

• 2
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t
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Figure 9. True Solution to Example 5.4.

0.9
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0.7

0.6

0.5

0.4

0.3

0.2

O.l

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.g 0.9

x-;_xi.q

Figure 10. True and Approximate Solutions to Example 5.4 at Time t = 2

-- - (M= = 8, ) -.- (M= = 16), _ (True).
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6 Conclusions

A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-

dependent problems with fixed and cantilever boundary conditions. The sinc basis properties

which facilitate the simple assembly of the discrete system are discussed in Section 2. In

Section 3, the sinc discretizations for the second-order temporal problem and the fourth-order

spatial problems are presented. Alternate formulations for the variable parameter fourth-

order problems are given which prove to be especially useful when applying the forward

techniques of this paper to parameter recovery problems. The ODE results are then combined

in Section 4 to form the discrete systems corresponding to the time-dependent problems of

interest. Computational issues are discussed and a robust and efficient algorithm for solving
i _ii _

the resulting matrix system is outlined. Numerical examples which highlight the method are

given in Section 5. As demonstrated bY the numerical results, the exponential convergence

rate of the method is maintained for problems with both analytic and singular solutions as

well as fixed and cantilever boundary conditions.
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